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PROCESSOR DISPLACEMENT: AN AREA-TIME TRADE OFF

METHOD FOR VLSI DESIGN

David M. DeRuyck

Lawrence Snyder

John D. Unruh *

Department of Computer Sciences, Purdue University,

West Lafayette, Indiana 47907

ABSTRACT

Direct VLSI implementation of pipelined (systolic) pro-
ccssor arrays can lead to an "over parallelized" design caus-
ir the chip to have unused or underutilized area. Processor
displacement design is a methodology that provides a spec-
trum of designs with differing time-area trade offs. The
methodology is motivated, presented in detail, and illus-
Lratcd by several examples. Direct experience for the Tran-
sitive Closure and Dynamic Programming systolic arrays is
presented.
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INTRODUCTION

Area-time trade offs for computing functions in VLSI technologies

have been the subject of much study in recent years [1,2,3,4]. Although

important theoretically, these results tend to be based on asymptotic

analysis and employ rather coarse resource measures. To date, their

impact on VLSI design and layout has been minimal.

We report on a methodology called processor displacemert design

which provides area-time trade offs for pipelined arrays of processors

(systolic arrays [7]) that are useful for practical VLSI design and layout

problems.

Processor displacement gives the VLSI designer a range of choices

that can be balanced to conform to constraints such as "pin"

The work described herein is part of the Blue CHiP Project and is support-
cc1 in part by the Office of Naval Research Contracts N00014-O0-K-0816
and NOOO1l-81-K-0360. The latter is Special Research Opportunities Task
;mor- 0 p.
'Authors perrmanent address: 1Bell Telephone Laboratories. Napcrvilic, IL
60t66.
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limitations and to increase the size of the problem solved with a

given chip area.

The widespread interest in systolic algorithms (see the references [5,6])

provides many opportunities to apply the methodology.

There are several benefits to processor displacement design. It pro-

vides a means of rapidly responding to the uneven improvements in pro-

cess technology, e.g., when feature sizes reduce without a corresponding

improvement in packaging technology. It gives a rational basis for decid-

ing between serial or parallel data transfer on and off the chip. The

methodology can even be transferred to solving the problem of mapping

large problems onto fixed size multiprocessor architectures.

The remainder of the paper is organized as follows. The next section

gives an example of the use of the methodology as well as its benefits and

liabilities. Next comes a thcrough presentation of the methodology. The

final section gives a summary and a discussion of some remaining issues.

MOTrVATiON AND PROBLEM CONTEXT

hi order to illustrate processor displacement, consider an idealized

design situation. A systolic array processing element cell, visualized as

containing processing circuitry and state memory, has been designed.

cuit

state

'1I IIII ... . . ... " -i m . . . .. ..
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Four processing elements of a linear systolic array have been imple-

mented as shown in Figure 1. (Kung and Leiserson's lower triangular

banded-system solver is of this variety [8, pp. 285-288]. The state values

are x, y and a, and the circuitry performs y 4- y + ax.) We suppose that

the four elements fully utilize the available chip area at A = 2x/m (for

some real value x > 0), and that the timing is such that all processors arc

active on each step once the pipeline has been filled. Moreover, we

assume the eight ports of the array arc connected to the eight pins of our

(over simplified) package. (We can ignore power, ground and clocking

wires in this discussion.)

Figure 1.

Now suppose the circuit is to be fabricated with a A = xjm process.

This ractor of two density improvement enables the systolic array to be

realized with only one-fourth the area of the previous implementation,

(Figure 2). It is possible, therefore, to increase the implementation to

sixtccn processing elements (Figure 3). Notice that this can be done by a

global reorganization of the cells without any cell redesign.

The sixteen element systolic array has twenty ports, but for the sake

uf this discussion, we still assume that only eight pins are available. It is

! . ,~. . . .



~~ I

Figure 2.

possible to multiplex the pins, but doing so has a liability: Processing ete-

m-clts must remain idle awaiting data. Not only does this mean that we

never have all sixteen copies of the processing circuitry active at once

and thus waste silicon area, we must break open our completed cell

design Lo add idling logic.

Figure 3.

Specification of sixteen processing elements without a corresponding

incrc:am iin pin availability causes us to over- parallclizc the design. We

simply have more processing circuitry than can be utilized. Although

this simplified example can be fixed by adopting a larger package, it is
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illustrative of a general fact that cannot be ignored: There must be a bal-

ance between the paraLel computation capability of the processing cir-

cuitry and the data transfer capability provided by the pins. It is this

balance that processor displacement design is intended to control.

Continuing with the example, notice that in both of the X = zx/m

implementations, silicon area is wasted; either it is unused (Figure 2) or

underutilized because of multiplexing (Figure 3). Wc can bring this

wasted area into productive use by increasing the size of the problem

solved on a chip. The idea is to reduce the amount of processing circui-

try until it matches the data transfer capacity of the pins. (In this case,

only four copies of the circuitry are required (Figure 4), alLhough the

situation is more complicated in general.) The remainder of the effective

chip area is dedicated to state storage for processing elements that will

be implemented by essentially multiprogramming the circuitry. A multi-

plexor is provided for this purpose. Each cluster of sLate storage cells

arid processing circuitry is called a multiP,. By using this processor dis-

placement approach, we have increased the size of the implemented sys-

tolic array to 28.

Figure 4.
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This factor of seven improvement in effective density from a factor of

two improvement in wire width was achieved without an increase in avail-

able pins. We paid for the improvement with a loss in time, but assessing

the exact amount is difficult. The layout in Figure 2 is faster than that of

Figure I by the speed improvements due to scaling, provided the data

can be delivered fast enough. This gain is offset in the layout of Figure 3

since it is slower by a factor of four compared with Figured 2 assuming

we do not multiplex the four "end" ports. Compared with Figure 3, the

layout of Figure 4 looses a factor somewhat less than two under the same

assumptions on multiplexing.

THE METHODOLOGY

The methodology to be described is not, as yet, a fully mechanical

procedure suitable for computer implementation as a subroutine in a

CAD system. It requires the designer to make judgements and estimates

based on his experience. Nevertheless, the process is quite procedural

and we will organize our presentation according to the six steps of the

methodology.

In order to aid the reader in understanding the detailed discussion of

the individual steps, we give the methodology in its entirety:

1. Develop an abstract sys~olic array processor (ASAP) to solve a
problem of arbitrary size.

2. Design the processing element ceil.

3J. Figure the effective chip area and the pin count.

4. Determine if processor displacement is needed.

5. Compute the amount of processor displacement.

6. Layout the displaced processors and establish their timing proto-
cols.

We now describe each step in detail.

I
i I' - -- -_ __ _'__ _ _



1. Develop au abstract Vstolic a'ray processor (ASAP) to solw a

problem of arbitrary size. Systolic arrays arc regular, locally connected

arrays of one (or a small number of) processing element(s) that operate

in a synchronous, pipelined manner and have external connections only

at the perimeter. (See references [9,10] for characterizations by the

inventors.) Three kinds of interconnection structure are typical: linearly

connected, orthogonally connected, and hexagonally connected. Other

connections have appeared, such as the toroidally connected Transitive

Closure Systolic Array [1 I], and these are suitable for our mythology pro-

vidcd that the connections are sufficiently "local" that clustering

preserves the interconnection structure.

In general, the "size" of an ASAP will be proportional to its perimeter

and describes some property of the size of a give problem. For example,

in the Kung and Leiserson Banded Matrix Systolic Arrays [8], it is the

width of the band, not the size of the matrix, that determines the size of

thc array. Thus, the width is designated as the size, n, of the ASAP. In

the case of the Transitive Closure Systolic Array [i], the size, n, is the

number of vertices.

The ASAP will determine two functions which have the size as a

parameter:

m (n) = number of processing elements in an ASAP of size n,

z (n) = number of inputs of an ASAP of size n.

The z(n) function describes the number of "values" that must be

transferred to an array of size n on each logical step, once the pipeline is

full. 'Thcsc inputs arc the candidates for muILiplexing and so the function

must be formulated with some care. In particular, for uniformity it may



-8-

be wise to omit certain inputs from this function as was done with the

four "end" wires in the exampl, of the last section. The term "values"

here refers to logical values, not bits. (See Step 3 for further discussion.)

For example, the linear ASAP of the last section has z (n) = n.

2. Design the Processing Element Cell. Th.; objective is not to

design a single, monolithic cell, but rather to design two cells: a process-

ing circuitry cell, pc cell, and a state memory cell, sm cell. Together,

these two cells should define a processing element for the ASAP. But

they should also define a family of cells, each one composed of one

instance of the pc cell and multiple instances of the sm cells. These serve

as multiPEs when multiplexing control logic is added. These conditions

imply not only that the two cells have a compatible geometry, but that

they are compatible with additional copies of the sm cell. (Sec Step 6 for

a discussion of the effect of various clustering choices.) In order that

"high level" manipulation of i.hese components be possible without any

internal modification, bus wires and selection lines should be incor-

porated into the sm cell.

Although many systolic arrays use only one kind of processing cle-

menL, it is possible that several types will be required [8]. If this is the

case, several pc cell types will obviously have to be designed. Several sm

cells may be required too, although these tend to be the same over the

entire array. When multiple element types are required, there will be

geometric constraints within the multiPE as well as between multiPEs.

Moreover there may be limits on the kinds of clustering possible, (see

Step 6.) These considerations should obviously be assessed before design-

ing.

There are two values that are determined by the cell design that will
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be needed later:

a = area of one processing element, i.e., area of a pc cell and an sm

cell,

q = that fraction ci a used by the sm cell, i.e., area of an sm cell/ a.

Since the subsequent analysis only requires these two values and not the

designs themselves, it is sufficient to have good estimates in order to

proceed.

By proceeding on the basis of good estimates, information can be

learned about two important design decisions. First, it is possible that

given layout dimensions and certain clustering strategies can lead to

multiPE geometries that do not pack well into the available chip area.

This could make a processor displacement design unachievable. By

estimating the area, we can determine the degree of clustering and this

will allow us to infer preferred cell dimensions that will pack easily.

Secondly, it may not be obvious how much parallelism is appropriate for

data transmission. Since this decision will probably influence cell design,

we can work through the methodology with several assumptions on the

extent of parallelism and compare the results. This approach is recom-

mended when speed is a significant consideration.

3. Figure the effective chip area and the pin count. Not all of the

chip area is available for use by the systolic array processing elements.

In adiLion to inpul/ouLpuL pads, we may neced area for multiplexor logic,

bus wires for routing signals between tWe pads and the array elements,

and possibly, buffers for timing (see Step 6). The area occupied by all of

these overhead components should be determined (or estimated). Define

the remaining area as

__________________________________
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A effective chip area.

We assume that A is a rectangle with dimensions that permit convenient

packing of pc and sm cells.

Of the pins available on the intended package, some will be dedicated

to power, ground and clocking signals. The remainder will be assigned to

the data transmission activity of the systolic array. If certain ports were

not included in the z (n) definition (Step 1), then they must be per-

manently assigned to pins and the available number reduced accordingly.

If there is a single output from the array, this should be included in the

permanently assigned pins.

The remaining pins are available to be used by the multiPEs. If the

processing elements use parallel input (and, perhaps output), then divide

the available pins by the width of the parallelism. (This allows us to refer

to a "pin" without reference to serial or parallel data transfer.) Now, if

the ASAP produces multiple outputs, then we assume there are z(n) of

them and that they use the same degree of parallelism as the input. If

so, divide the number of available pins by two, since for each pin assigned

to the input, one must be assigned to an output. (Any other ratio can be

handled analogously.) Define this result to be

p = number of available pins.

This is the number of data "values" that can be read in a single logical

step (see Step 1).

4. L)etermine if processor displacement is needed. The objective of

this step is to determine if there are sufficiently many pins to permit a

direct implementation of a portion of the systolic array. Clearly,

'I
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processing elements could fit into the available chip area. By solving

vn(n) =

for n we can determine the size of the region of the ASAP that fits on one

chip. This region of the ASAP will require z (n) pins. Thus, if

z (n) sp,

direct implementation of the systolic array is possible with full parallel-

ism.

Care must be exercised in interpreting the results of the preceding

LesL. If direct implementation is possible there is still the problem of

packing the pc cell, sm cell pairs into the available area. In the following

we assume that

z(n) > p

by a "substantial" amount.

5. Compute the amount of processor displacement. Using the previ-

ously defined functions,

m (n) = number of processing elements in an ASAP of size n,

z (n) number of inputs of an ASAP of size n, and constants,

a = area of a processing element,

q = fraction of a required for state memory,

A = effecLive chip area

p = number of available pins,

,* . .. . . . ...I ~ m ,i i . .. i g .. . .. . ..... = -. ... . .. ii ~ . ..... ... ..
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we can derive an expression for the area occupied by a displaced proces-

sor design.

The key quantity in our analysis is the bundling function,

k (n) =z()
P

which describes the degree of multiplexing required of the p pins in order

to deliver the z(n) input required by one logical step of an ASAP of size n.

Tlius, in k(n) processing steps the data for one logical step of a size n

ASAP can be read. Since the systolic array is assumed to rcquire this

many inputs on each logical step, the parallelism of the ASAP should be

reduced by a factor of k(n). Thus, each multiPE should simulate k(n)

logical processing elements, and hence the name "bundling function."

With k(n) bundling, the m(n) logical processing elements can be

simulatcd by mrn)/k(n) InultiPEs each containing k(n) - 1 additional

memory states. The total must thus satisfy

A (n+ ( n) 7 (,n ),7 a.

Substituting for k(n) and simplifying the resulting quotients yiclas

A [ (n) I? + (') -P mni)Ja.
z (n) z (n)

Furtlier sirnplification gives

A = z-P ('r) 1 + Z (n)
p (1)

Sinct: all quantities are known as a result of Steps 1-3, we can solve for n

and determine the size of the ASAP that could be designed. Knowing n

allows us to compute the bundling factor, k, from k(n).
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Example: Equation (1) can be used to derive the displaced processor

design given in the second section. For the linear systolic array,

m (n) = n and z(n) = n. We used p = 4 before and if we use a = and

q= ,then A = 16 is appropriate. Thus

11L -

2

and n=28. Since k(n) = n/4. The bundling factor is 7.

Obviously, some judgement must be employed in applying equation

(t). lor example, since the bundling factor dcscribes the extent of the

multiplexing and the number of displaced processors in a multiPE, the

design is greatly simplified if it is an integer. Thus, one might choose the

greatest n less than that determined by equation (1) such that k(n) is an

integer.

6. Layout thLe displaced processors and establish their timing proto-

cots. With a bundling factor of k established in Step 5, we layout the mul-

tiPEs such that each contains a copy of the pc cell and k copies of the sm

cell. The multiPEs are then laid out in the available area such that their

input/output ports are connected either to input/output pads or the

ports of adjacent processing elements. The layout problem, as has

already been mentioned, is subject to packing difficulties when the

dimensions of the available area are not multiples of the dimensions of

the muliPEs. Wiring the ports of a linear systolic array should be a

straightforward operation. But wiring and timing two dimensional sys-

tulic arrays presents some interesting problems.

_______
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Each multiPE will simulate a contiguous region of k logical process-

ing clcincLs of the ASAP. The geomeLry of this region significantly

effects the multiplexing operation. Let the bundling factor k = 4 and con-

sider two rnultiPEs tnat simulate regions of the ASAP with input on two

sidcs, each with different geometries.* (Refer to Figure 5.) MultiPE B

simulates a 2 x 2 block B B]

Figure 5.

of logical processing elements while multiPE C simulates a columnar

region.

The key difference between multiPEs B and C is that when they

appear along the perimeter (ignore the corner case for the moment) of

the ASAP, they have different numbers of external ports; B has two while

C has four. Since each pin will deliver four values in a logical step, each

C multiPE processes exactly the amount of data provided by the pin. But

each B multiPE can only use two inputs during a logical cycle, so two B

multiPEs must be attached to one pin.

ONI ice thuit wv ar: not referring to the geometry of the pc eil and sm eell organ-
izution of the layout.

4 . . .. . . I I I l l ll " .. . . .. . . i , - . . - - - . . . . . . . . .
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The main consequence of several multiPEs sharing one pin is that the

order in which the constituent processing elements are simulated cannot

be the same. For example, suppose two B multiPEs appear along the per-

imeter and share a pin. Then on processing step one, they cannot both

simulate processing element <1,1> since that would require them both to

read from the pin simultaneously. We must either introduce a buffer or

change the order in which constituent processing elements are simu-

lated, so that they are not both reading at once. Notice that linear mul-

tiPEs are not subject to this difficulty.

Handling the external input for the multiPE that simulates the

corner processing element adds a bit more complexity because for either

geometry, it has more inputs than the others. In either case the multiPE

will be connected to two different pins. Again, changing the ordering of

the simulations (now it must be done along both sides) or buffering solves

the problem.

Perhaps the simplest solution is to use C multiPEs such that the

corner multiPE simulates in sequential order down the column and the

k-1 adjacent C multiPEs simulate in an ordcr that is a cyclic shift

(upward) of this sequence. (Obviously, analogous remarks apply for the

output.)

EXAMPLES

We have used the processor displacement methodology to analyze

two systolic array algorithms. The computed results are summarized in

Table 1. The processing element layouts use Mead and Conway [9] design

rules. The expression "p = z(n)" means that pins are assumed to be

unlimited.
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TABLE I.

Transitive Dynamic
Closure Programming

n2 m (n) n'

2n z (n) 5n
params 6mm x 6mm A 6mm x 6mm

11286X2  a 285000hX
0.5 q 0.25

X 2/zln lm 2j.m 1/tm
Sn 26 56 p=(n) 5 11

M (n) 784 3136 25 121

n 28 66 package al 19
m (n) 784 4356 size =64 64 361

multiPEs 784 1452 16 38I

nt 32 71 package 9 20

m (n) 1024 5041 size =40 81 400
multiPEs 512 11261 11 24

For t he Transitive Closure Systolic Array [11], n is the number of ver-

tices. Since the input does not overlap with the output, the same pins

are used for both operations. Notice that there is no benefit in processor

displacement for X = 2jum and package size of 64 since only 56 pins are

needed in addition to the four overhead pins, i.e., in this technology it is

possible to have full parallelism.

The Dynamic Programming Systolic Array solves string distance

measurement using an n x n array with six bit data. Thus, for a 64 pin

package p = (64 - 4)/6 = 10 logical pins. Each cell requires three values

from the north and two from the west.

Notice that the values in Table I may be optimistic in the sense that

"divisibility constraints" have been ignored. To use the pins optimally, n

should be chosen so that z (n)/ k (n) is an integer. If it is not, some

bandwidth will be wasted or the timing will be significantly complicated.

A further constraint that one might require is for m (n)/ k, the number of
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multiPEs used, to be an interger. Fractional numbers could be achieved

by having multiPEs simulate fewer than k logical processing elements.

The Dynamic Programming array for packages of 04 pils alld A = 2Am

is the only table entry to satisfy both constraints. We can often reduce

the problem size to enforce the divisibility constraints. For example, in

the 'l'ransitive Closure, package of 40 pins, A = lm case, the problem size

must be reduced to n = 54 before the divisibility constraints are met.

This choice reduces the area utilization from better than 98% to about

61%. H-owever, if the available area were about 1.5% larger (or

equivalently, the cells were proportionately smaller), a problem size of

n = 72 (with k = 4) would bc possible. This would require redesigning the

inpuL/output pad area. In general the divisibility constraints can be con-

trolled with several parameters and the optimal combination depends on

the designer's judgement.

SUMMARY

We have presented a six step methology that allows the amount of

parallelism in a systolic array to be matched to the data transfer

bandwidth provided by the pins. The technique appears to be applicable

to systolic arrays with a wide variety of characteristics. It provides a

means of evaluating the benefits of serial vs parallel data transfer and for

fully utilizing the available silicon.

-- ..
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